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Abstract. We consider solutions of the 2× 2 matrix Hamiltonian of physical systems within the context of
the asymptotic iteration method. Our technique is based on transformation of the associated Hamiltonian
in the form of the first order coupled differential equations. We construct a general matrix Hamiltonian
which includes a wide class of physical models. The systematic study presented here reproduces a number
of earlier results in a natural way as well as leading to new findings. Possible generalizations of the method
are also suggested.

PACS. 03.65.Ge Solutions of wave equations: bound states – 03.65.Ca Formalism – 73.21.La Quantum
dots – 71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect

Introduction

During the last decade, a great deal of attention has been
paid to examining different quantum optical models [1–5].
Recently an iteration technique [6,7] has been suggested
to solve the Schrödinger equation which improves both an-
alytical and numerical solutions of the problems and has
been developed for some quantum optical systems. The
solution of quantum optical Hamiltonians are important
in the existing literature. In general, the study of two level-
systems in one and two-dimensional geometry coupled to
bosonic modes has been the subject of intense attention
because of its extensive applicability in various fields of
physics [8–18]. Due to the practical and technological im-
portance of these models, it is not surprising that various
aspects have been studied both analytically and numeri-
cally [19–27]. Such systems have often been analyzed us-
ing numerical methods, because the implementation of the
analytical techniques does not yield simple analytical ex-
pressions. Remarkably, exact solutions have not been thus
far presented except for special cases, even though it has
been suggested that the problem may be solved exactly.
The required Analytical treatments need tedious calcula-
tions.

Quantum optical models are one of the most fascinat-
ing phenomena in modern physics and chemistry, provid-
ing a general approach to understanding the properties of
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molecules, crystals and their origins. Most of these Hamil-
tonians have yet to be solved exactly. Therefore, the nat-
ural question arising at this point is: can the asymptotic
iteration method be applied and used to obtain the solu-
tions to these systems? The answer of this question is the
main topic of this paper.

In recent years much attention has been focused on
the asymptotic iteration method (AIM) [6,28–32]. This
method reproduces exact solutions to many exactly solv-
able differential equations and these equations can be re-
lated to the Schrödinger equation. It also gives accurate
results for non-solvable Schrödinger equations, such as the
sextic oscillator, cubic oscillator, deformed Coulomb po-
tential, etc. which are important in applications to many
problems in physics. Encouraged by its satisfactory per-
formance through comparison with other methods, we
feel tempted to extend AIM to solve matrix differential
equations. Although AIM has been applied to solve the
Schrödinger equation, its application to the solution of the
matrix equations [7] still needs to be improved. In contrast
to the solution of the Schrödinger equation including po-
tentials of Coulomb, Morse, harmonic oscillator etc. by
using AIM, study of the matrix Hamiltonians has not at-
tracted much attention in the literature. Therefore, we
concentrate on the solution of a general two-dimensional
two mode bosonic Hamiltonian by using AIM in this pa-
per.

The paper is organized as follows. In Section 2 we dis-
cuss transformation of the Hamiltonians whose original
forms are given as boson and fermion operators. We show
that the Hamiltonian can be expressed as two coupled first
order differential equations in the Bargmann-Fock space.
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In Section 3, we develop AIM to obtain eigenvalues and
eigenfunctions of the different matrix Hamiltonians widely
used in physics. Section 4 is devoted to solve a wide class
of physical Hamiltonians in the framework of the AIM.
Finally we conclude our results in Section 5.

Two dimensional two mode bosonic
Hamiltonian

The most general form of the Hamiltonian consists of the
coupling of a single spin-1/2 to the boson field in two
dimensional geometry. It can be written as

H = H0 + ω0σ0 +
(
κ1a+ κ2a

+ + κ3b+ κ4b
+
)
σ+

+
(
γ1a+ γ2a

+ + γ3b+ γ4b
+
)
σ− (1)

where H0 = �ω1 (a+a) + �ω2 (b+b) and ωi, κi and γi are
physical constants. The Pauli matrices σ0,± are given by

σ0 =
(−1 0

0 1

)
; σ+ =

(
0 1
0 0

)
; σ− =

(
0 0
1 0

)
, (2)

and bosonic annihilation a, b and creation a+, b+ operators
satisfy the usual commutation relations
[
a, a+

]
=

[
b, b+

]
= 1;

[a, b] =
[
a+, b+

]
=

[
a+, b

]
=

[
a, b+

]
= 0. (3)

It is seen that the Hamiltonian (1) includes various phys-
ical Hamiltonians depending on the choice of the param-
eters, and it is Hermitian if κ1 = γ2, κ2 = γ1, κ3 = γ4

and κ4 = γ3 for real parameters. In general H describes
spin phonon (photon) relaxation in the presence of a mag-
netic field. It can also be used to study interaction of a
two-level atom with an electromagnetic field. As explicit
examples, when ω1 = ω2 = ω, κ2 = κ3 = γ1 = γ4 = 0 and
κ1 = κ4 = γ2 = γ3 = κ, the Hamiltonian H reduces to
the E ⊗ ε Jahn-Teller (JT) Hamiltonian [9,33] and when
ω1 = ω + ωc, ω2 = ω − ωc, κ2 = κ3 = γ1 = γ4 = 0
and κ1 = −κ4 = γ2 = −γ3 = κ then the Hamilto-
nian H becomes the Hamiltonian of quantum dots in-
cluding spin-orbit coupling [16,12]. One can also obtain
Jaynes-Cummings (JC) Hamiltonian [14] and modified JC
Hamiltonian [34] as well as many other interesting physi-
cal Hamiltonians by appropriate choices of the parameters
ωi, κi and γi in (1). There exists a relatively large num-
ber of different approaches for the solution of the eigen-
value problem for Hψ = Eψ in the literature. However,
we present here a systematic treatment for the determi-
nation of the eigenvalues and eigenfunctions of (1) in the
context of AIM.

We note that the Hamiltonian of a physical system is
given in the form of a differential equation in some cases.
One way to obtain the bosonic form of a Hamiltonian is to
construct a suitable differential form of the bosons. There-
fore, it is worth discussing some useful differential forms
of the bosons and the connection between them before we
begin to present a procedure to solve (1).

Forms of bosons

We are interested in the two-level systems in a one and
two-dimensional geometry whose Hamiltonians are given
in terms of bosons-fermions or matrix-differential equa-
tions. By the use of the differential form of the opera-
tors one can easily find the interrelation between boson-
fermion and matrix differential equation formalisms of the
Hamiltonians. There are various differential forms of the
boson operators. At this point, let us start by introducing
the following differential forms of the boson operators:

a+ =
�

2
(x+ iy) − 1

2�
(∂x + i∂y),

a =
�

2
(x− iy) +

1
2�

(∂x − i∂y),

b+ =
�

2
(x− iy) − 1

2�
(∂x − i∂y),

b =
�

2
(x+ iy) +

1
2�

(∂x + i∂y) (4)

where � =
√

mω
�

is the length parameter. In principle, if
a Hamiltonian is expressed by boson operators, one could
rely directly on the known formulae of the action of bo-
son operators on a state with a defined number of par-
ticles without solving differential equations. Apart from
the mentioned method, the Hamiltonians can often not be
solved exactly, then we need to develop alternative meth-
ods. It is amazingly interesting that the Hamiltonian (1)
can be solved within the framework of the AIM when it is
transformed into the form of the first order coupled differ-
ential equations under the constraints that will be given
in equations (11a–11d). Now, we briefly discuss three well
known differential forms of the bosons and the relation
between them. In order to obtain different forms of the
bosons we present a transformation procedure. For the
sake of simplicity we take � = m = ω = 1 and then �
becomes unity.

Consider the following exponential operator

Λ = exp
[
β

(
a+b+ b+a

)]
. (5)

The operator acts on the bosons as follows:

ΛaΛ−1 = a cosβ − b sinβ; Λa+Λ−1 = a+ cosβ − b+ sinβ

ΛbΛ−1 = b cosβ + a sinβ; Λb+Λ−1 = b+ cosβ + a+ sinβ.
(6)

If we set β = −π/4 and change the variable y → iy in
the transformation given in (6), we obtain the following
relations

Λa+Λ−1 =
1√
2
(x− ∂x); ΛaΛ−1 =

1√
2
(x+ ∂x),

Λb+Λ−1 =
1√
2
(y − ∂y); ΛbΛ−1 =

1√
2
(y − ∂y). (7)

The other important differential forms of the bosons can
be obtained by transforming the bosons with the following
operator:

Γ = exp
[α
2

(
a2 + a+2 + b2 + b+2

)]
. (8)
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where α is the rotation angle of bosons. The action of the
operator on the bosons is given by

ΓaΓ−1 = a cosα−a+ sinα; Γa+Γ−1 = a+ cosα+ asinα.

ΓbΓ−1 = b cosα− b+ sinα; Γb+Γ−1 = b+ cosα+ b sinα.
(9)

For α = π/4, the boson operators take the form

a→ 1√
2

(
a− a+

)
=

d

dx
; a+ → 1√

2

(
a+ a+

)
= x

b→ 1√
2

(
b − b+

)
=

d

dy
; b+ → 1√

2

(
b+ b+

)
= y. (10)

The last formulation is known as the Bargmann-Fock
space description of bosons [35] and this form plays a key
role when constructing the one-variable first order ma-
trix differential equation form of (1). When we insert the
form (10) in (1), the Hamiltonian H becomes a first order
and two variable matrix differential equation. In order to
separate the variables, we look for the conserved quan-
tity of the system. After some treatment, we obtain the
following conserved quantities:

K1 = a+a− b+b− 1
2
σ0, when γ2 = γ3 = κ1 = κ4 = 0

(11a)

N1 = a+a+ b+b+
1
2
σ0, when γ1 = γ3 = κ2 = κ4 = 0

(11b)

K2 = a+a− b+b+
1
2
σ0, when γ1 = γ4 = κ2 = κ3 = 0

(11c)

N2 = a+a+ b+b− 1
2
σ0, when γ2 = γ4 = κ1 = κ3 = 0.

(11d)

We note here that although we obtain four conserved
quantities,K1 conjugates withK2 andN1 conjugates with
N2. They can be provided by a similarity transformation

K = K2 = UK1U
−1 and N = N2 = UN1U

−1 (12)

where U = σ+ +σ−. It is well known that if two quantum
mechanical operators commute then they have common
eigenfunctions. Thus one can write

K |n1,n2〉 =
(
k +

1
2

)
|n1,n2〉 ,

N |n1,n2〉 =
(
k +

1
2

)
|n1,n2〉 , (13)

and the eigenvalue problem can easily be solved in the
Bargmann-Fock space. Thus, we obtain the following ex-
pressions for the eigenfunctions of K and N :

ψ(x, y) = xkφ (xy) |↑〉 + xk+1φ (xy) |↓〉 , for K (14a)

ψ(x, y) = xk+1φ (y/x) |↑〉 + xkφ (y/x) |↓〉 for N
(14b)

where |↑〉 stands for the up state and |↓〉 stands for the
down state. In this case one can normalize the wavefunc-
tion ψ(x, y) by using the relation

∫

∞
e−Wψ(x, y)dxdy

where W is the weight function and the integral is taken
over all space. The eigenfunction of the Hamiltonian can
be obtained from the relation

|n1, n2〉 = Γ−1Λ−1ψ(x, y). (15)

Meanwhile we note that the conserved quantity N cru-
cially depends on the conservation of the number of par-
ticles. The classical motion of the particle takes place in
the space of angular momentum on a sphere. However, to
obtain a physical meaning of K from another perspective;
when the motion of the particle takes place on an ellip-
soid, the conserved quantity is given in the form of (13).
We have obtained four different conserved quantities for
the Hamiltonian (1) depending on the choice of param-
eters. However, it is fact that K1 and K2 can easily be
mapped into each other. It implies that Hamiltonians ob-
tained under the constraints (11a) and (11c) correspond
to physically similar systems. We also say that N1 and
N2 can also be mapped into each other and the Hamil-
tonians obtained under constraints (11b) and (11d) also
correspond to physically similar systems. Therefore, it is
valid to discuss the solution of the Hamiltonian (1) under
the conditions given in (11c) and (11d).

Since equations (11a) and (1) commute, then they
have the same eigenfunctions under the constraint given
in (11a). Thus, insertion of (14a) into the Hamiltonian (1)
and using the form (10), we obtain the following set of one
variable coupled differential equations:

[
(ω1 + ω2) z

d

dz
+

(
k +

1
2

)
ω1 + ω0 − E

]
φ1 (z)

+
[(
k + 1 + z

d

dz

)
κ1 + κ4z

]
φ2 (z) = 0 (16a)

[
(ω1 + ω2) z

d

dz
+

(
k +

3
2

)
ω1 + ω2 − ω0 − E

]
φ2 (z)

+
[
γ3

d

dz
+ γ2

]
φ1 (z) = 0 (16b)

where z = xy and E is the eigenvalue of the Hamilto-
nian H and φ1 (z) and φ2 (z) correspond to up and down
eigenfunctions of the Hamiltonian H , respectively. Simi-
larly, when we substitute (14b) into the Hamiltonian (1)
with the form (10), we obtain the following set of one
variable coupled differential equations:

[
(ω2 − ω1) z

d

dz
+ (k + 1)ω1 + ω0 − E

]
φ1 (z)

+ [κ2 + κ4z]φ2 (z) = 0 (17a)
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[
(ω2 − ω1) z

d

dz
+ kω1 − ω0 − E

]
φ2 (z)

+
[
γ1(k + 1) + (γ3 − γ1z)

d

dz

]
φ1 (z) = 0. (17b)

where z = y/x. Our task is now to apply the AIM to solve
the corresponding Hamiltonian.

Development of the AIM for matrix
Hamiltonians

In this section we systematically present a procedure for
the solution of 2 × 2 first-order matrix differential equa-
tions. Consider the following first order matrix differential
equation:

φ′ = u0φ (18)

where φ = [φ1, φ2]
T , two component column vector u0 is a

2× 2 matrix function. Note that φ and u0 are functions of
z and φ′ is the first derivative with respect to z. Now, in
order to obtain a general solution to this equation in the
framework of the AIM we use similar arguments to those
given in [7]. The differential equation (18) can be written
as the two coupled equation

φ′1 = a0φ1 + b0φ2; φ′2 = c0φ2 + d0φ1 (19)

where a0, b0, c0 and d0 are elements of the matrix u0. It is
easy to show that the nth derivative of φ1 and φ2 can be
written as

φ′′1 = a1φ1 + b1φ2; φ′′2 = c1φ2 + d1φ1

φ′′′1 = a2φ1 + b2φ2; φ′′′2 = c2φ2 + d2φ1

· · · (20)

φ
(n)
1 = an−1φ1 + bn−1φ2; φ

(n)
2 = cn−1φ2 + dn−1φ1

φ
(n+1)
1 = anφ1 + bnφ2; φ

(n+1)
2 = cnφ2 + dnφ1.

In order to discuss the asymptotic properties of (1), it is
necessary to determine the coefficients an, bn, cn and dn.
After some straightforward calculation, we can obtain the
following relations:

an = a0an−1 + a′n−1 + d0bn−1

bn = b0an−1 + b′n−1 + c0bn−1

cn = c0cn−1 + c′n−1 + b0dn−1

dn = d0cn−1 + d′n−1 + a0dn−1. (21)

Our task is now to introduce the asymptotic aspect of the
method. For this purpose, the nth and (n+1)th derivatives
of φ1 and φ2 can be written as

φ
(n)
1 = an−1

(
φ1 +

bn−1

an−1
φ2

)
,

φ
(n)
2 = cn−1

(
φ2 +

dn−1

cn−1
φ1

)

φ
(n+1)
1 = an

(
φ1 +

bn
an
φ2

)
,

φ
(n+1)
2 = cn

(
φ2 +

dn

cn
φ1

)
. (22)

The coefficients d0 and c0 include the coupling constants.
Therefore, for sufficiently large n we can suggest the fol-
lowing asymptotic constraints:

bn−1

an−1
=
bn
an

= λ1;
dn−1

cn−1
=
dn

cn
= λ2. (23)

In this formalism, the relations given in (23) imply that
the wave functions φ1 and φ2 are truncated for sufficiently
large n and the roots of the relations given in (23) belong
to the spectrum of the matrix Hamiltonian. Therefore,
one can easily compute the energy of the Hamiltonian by
solving (23) for the energy term when z → z0. Under
the asymptotic condition of (23), one can find the wave

functions φ1 and φ2. When we take φ
(n+1)
1

φ
(n)
1

and φ
(n+1)
2

φ
(n)
2

by

using (22) under the constraints given in (23), we obtain:

φ
(n)
1 = exp

(∫
an

an−1
dz

)
or φ

(n)
2 = exp

(∫
cn
cn−1

dz

)
.

(24)
Substituting the expression of an (and cn) given in (21)
into (24) and then replacing the φ(n)

1 (and φ
(n)
2 ) in (20),

respectively, one gets the following expressions;

φ1 + λ1φ2 = exp
(∫

(a0 + λ1d0) dz
)

or

φ2 + λ2φ1 = exp
(∫

(c0 + λ2b0) dz
)
. (25)

Using the second equality in (25), one can substitute
φ2 into the first equality in equation (19). Thus, one writes

φ′1 + (b0λ2 − a0)φ1 = C1b0 exp
(∫

(c0 + λ2b0) dz
)

(26)

and the solution is found as

φ1 = exp
(∫

(a0 − λ2b0) dz
)

×
[∫

C1b0 e
(
∫

(c0+λ2b0)dz) dz + C2

]
. (27)

If the same procedure is performed for φ2, one finds the
solution as

φ2 = exp
(∫

(c0 − λ1d0) dz
)

×
[∫

C3d0 e
(
∫
(a0+λ1d0)dz) dz + C4

]
. (28)

An immediate practical consequence of these results
is that the eigenvalues and eigenfunctions of the various
quantum optical Hamiltonians can be determined. In the
following sections, it is shown that this asymptotic ap-
proach opens the way to the treatment of a large class of
matrix Hamiltonians of practical interest.
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Results and Discussions

In this part, we apply the results of previous sections to
obtain the solutions of the Hamiltonians given by equa-
tions (16a,b) and (17a,b). We briefly discuss the corre-
sponding physical system of each Hamiltonian.

Solution of the Hamiltonian H under the constraints:
γ1 = γ4 = κ2 = κ3 = 0

In this case the Hamiltonian includes two important phys-
ical Hamiltonians: E⊗ε Jahn-Teller (JT) Hamiltonian [9]
and Hamiltonians of quantum dots including spin-orbit
coupling [16,33]. When ω1 = ω2 = ω, κ2 = κ3 = γ1 =
γ4 = 0 and κ1 = κ4 = γ2 = γ3 = κ, the Hamiltonian
H reduces to the E ⊗ ε JT Hamiltonian as we have men-
tioned before. It is obvious that the corresponding first
order differential equations (16a, b) for JT Hamiltonian
can be written in the following form:

φ′1 = a0φ1 + b0φ2; φ′2 = c0φ2 + d0φ1. (29)

where the coefficients a0, b0, c0 and d0 are given by

a0 =
κ2 − 2ω0 − 2k + 2E − 2

4z − κ2

b0 =
κ (ω0 + k + 2z + E)

κ2 − 4z

c0 =
κ2(1 + k + z) + 2z (ω0 − k + E − 2)

z (4z − κ2)

d0 =
κ (E − ω0 − k + 2z + 1)

z (κ2 − 4z)
. (30)

Using a simple MATHEMATICA program one can com-
pute an, bn, cn and dn by using the relations given in (21).
On the other hand, for each iteration the expression
δ1(z) = bn−1(z)an(z) − an−1(z)bn(z) (and δ2(z) =
dn−1(z)cn(z) − cn−1(z)dn(z)) depends on different vari-
ables, such as En, κ, ω0 and z. It is also noticed that the
iterations should be terminated by imposing the quan-
tization condition δi(z) = 0, i = 1, 2 as an approxima-
tion to (23) to obtain the eigenenergies. The calculated
eigenenergies En by means of this condition should, how-
ever, be independent of the choice of z. The choice of z is
observed to be critical only to the speed of convergence of
the eigenenergies, as well as for the stability of the process.
In our study it has been observed that the optimal choice
for z is z = 0 [31]. Therefore, we set z = 0 at the end
of the iterations. We also note that the first value of the
solution set of δ1(z) = 0 (or δ2(z) = 0) is not physically
acceptable unless the system is exactly solvable.

To fix the iteration number for convergence, the first
twenty energy levels have been determined for n =
8, 9, 10, 11, 12, 14, 16, 18 iterations for the Hamiltonian
above. It has been obtained that E20 = 21.103745 for
n = 10, E20 = 21.007171 for n = 11, E20 = 21.007064 for
n = 12, E20 = 21.007064 for n = 13, and E20 = 21.007064
for n = 14, 16, 18 iterations, respectively, for k = 1, w0 =

Table 1. The ground–state energies obtained from refer-
ences [36–39] and from the quantization condition by using
coefficients given in equation (30) for different values of κ in
the case that k = 0, w0 = 0, w = 1.

κ Ref. [36] Ref. [37] Ref. [38] Ref. [39] Present Results

0.25 0.774 0.7766 0.7765 0.7739 0.7738

0.5 0.578 0.5877 0.5870 0.5780 0.5780

0.75 0.400 0.4173 0.4158 0.3998 0.3997

1 0.233 0.2586 0.2560 0.2331 0.2330

2 –0.369 –0.3157 –0.3232 –0.3686 –0.3689

3 –0.919 –0.8466 –0.8575 –0.9177 –0.9189

5 –1.961 –1.8716 –1.8831 –1.9540 –1.9610

7 –2.976 –2.8833 –2.8932 –2.9586 –2.9760

10 –4.485 –4.3937 –4.4019 –4.4594 –4.4850

15 –6.991 –6.9042 –6.9108 –6.9610 –6.9901

20 –9.493 –9.4111 –9.4168 –9.4627 –9.4809

30 –14.496 –14.4202 –14.4249 –14.4651 –14.488

0, w = 1, κ = 1
10 . It is obviously seen that there is no

change in the 20th energy value for n ≥ 12. Since it is also
the same for the other Hamiltonians given below, n = 14
iteration is assumed to be sufficient for the determination
of the energy eigenvalues of the related Hamiltonians.

In Table 1 we have compared our results with previous
studies. It is seen that the results obtained by the AIM
agree with those in references [36–39].

Under the given conditions the Hamiltonian (1) takes
the form:

H = H0 + ω0σ0 + κ
[(
a+ b+

)
σ+ +

(
a+ + b

)
σ−

]
. (31)

As a related topic, we mention here that studies of the
E⊗ ε JT problem led Judd [8] to discover a class of exact
isolated solutions of the model. To determine the relations
between the parameters of the model, one can obtain an
analytic form of two eigenvectors of the Hamiltonian cor-
responding to the specific energy. The complete descrip-
tion of these solutions has been given by Koç et al. [33].
They observed that quasi-exact solutions can be obtained
by using osp(2, 2) super algebra.

The physical systems described by the Hamilto-
nian (31) are summarized as follows. When ω0 = 1/2 and
k = 0, the corresponding equation related to the Hamil-
tonian of the displaced coupled harmonic oscillator whose
eigenvalues are obtained as a function of coupling con-
stant, κ, is solved by using AIM and the result is given in
Figure 1.

The Hamiltonian corresponds to three octahedral JT
systems when ω0 = 1/2 and k takes integer or half-integer
values. These octahedral systems are Γ8 ⊗ (ε+ τ2) linear
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Fig. 1. Energy of the displaced coupled harmonic oscillator as
a function of coupling constant.
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Fig. 2. Energy of the octahedral JT systems as a function of
coupling constant.

E ⊗ ε and linear Γ8 ⊗ τ2, for which their eigenvalues are
depicted in Figure 2.

Finally, in the presence of an external field, ω0 �= 1/2,
the Hamiltonian is compatible with the generalized E ⊗ ε
JT system and dimers. For dimers k = 0 and for gener-
alized E ⊗ ε JT system, k takes half-integer values. The
results of the iteration for dimers are given in Figure 3
and for generalized E⊗ε JT system are given in Figure 4.

It is shown in the first 4 figures that the energy be-
comes an oscillating function of the coupling constant κ
when k > 0.

The Hamiltonians of quantum dots including Rashba
coupling can be obtained when we set ω1 = ω2 = ω, κ2 =
κ3 = γ1 = γ4 = 0 and κ1 = −κ4 = γ2 = −γ3 = κ, and
the coefficients of the coupled differential equations are
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Fig. 3. Energy of the dimer as a function of coupling constant.
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Fig. 4. Energy of the generalized E⊗ε JT system as a function
of coupling constant.

given by

a0 =
κ2 − 2ω0 − 2k + 2E − 2

4z + κ2

b0 =
κ (2z − ω0 − k − E)

κ2 + 4z

c0 =
κ2 + 2 (ω0 + k + E)

4z + κ2
− k + 1

z

d0 =
κ (E − ω0 − k − 2z − 1)

z (κ2 + 4z)
. (32)



R. Koç et al.: Solution of spin-boson systems in one and two-dimensional geometry 381

0 0.5 1 1.5 2
Coupling Constant, κ

0
2
4
6
8

10

E
ne

rg
y

k�2, ω0�0.5

0 0.5 1 1.5 2
Coupling Constant, κ

0
2
4
6
8

E
ne

rg
y

k�1, ω0�0.5

Fig. 5. Energy of the Rashba Hamiltonian as a function of
coupling constant.

Note that the origin of the Rashba spin-orbit coupling
in quantum dots is due to the lack of inversion symme-
try which causes a local electric field perpendicular to the
plane of the heterostructure. In the literature, the Hamil-
tonian has been formalized in the coordinate-momentum
space leading to a matrix differential equation.

Solution of the Hamiltonian H under the constraints:
γ1 = γ3 = κ2 = κ4 = 0

Under the constraints given in this section, we study var-
ious well-known exactly solvable Hamiltonians which give
us opportunity to test our approach. By the given con-
straint, the Hamiltonian (1) takes the form

H = H0 + ω0σ0 + (κ1a+ κ3b)σ+ +
(
γ2a

+ + γ4b
+
)
σ−.
(33)

We interpret below the solution of the three physical sys-
tems using AIM.

Jaynes Cummings Hamiltonian (γ4 = κ3 = ω2 = 0, κ1 =
γ2 = κ)

The Jaynes-Cummings (JC) Hamiltonian with rotating
wave approximation is given by

H = ωa+a+ ω0σ0 + κ
(
σ+a+ σ−a+

)
. (34)

In this case the coefficients of the coupled differential equa-
tions (17a,b) are given by

a0 = −
(
κ2 + ω (E − kω + ω0)

ω2 z

)

b0 =
κ (E − ω0)

ω2z

c0 =
−E + ω + kω + ω0

ωz

d0 =
κ

ωz
. (35)

The AIM leads to the following expressions for the eigen-
values of the JC Hamiltonian

n = 1; E =
(
k +

1
2

)
ω ∓ 1

2

√
4κ2 (k + 1) + (ω + 2ω0)

2

n = 2; E =
(
k − 1

2

)
ω ∓ 1

2

√
4κ2 (k) + (ω + 2ω0)

2

n = 3; E =
(
k − 3

2

)
ω ∓ 1

2

√
4κ2 (k − 1) + (ω + 2ω0)

2

n = n; E =
(
k +

3
2
− n

)
ω

∓1
2

√
4κ2 (k + 2 − n) + (ω + 2ω0)

2
. (36)

It is obvious that when the coupling constant κ is zero,
then the result is the eigenvalues of the simple harmonic
oscillator.

Substituting the variables a0, b0, c0 and d0 in equa-
tions (27) and (28), one finds the eigenfunctions φ1(z) and
φ2(z) as

n = 1; φ1 = 1 φ2 = 1
n = 2; φ1 = z φ2 = z

n = 3; φ1 = z2 φ2 = z2

n = n; φ1 = zn−1 φ2 = zn−1. (37)

Using equation (14b), one writes

ψ(x, y) = xk(y/x)n−1| ↓〉 + xk+1(y/x)n−1| ↑〉 (38)

and finds

ψ(x, y) = Cx1+k−nyn−1 (| ↓〉 + x| ↑〉) (39)

where C is the normalization constant, k is the state num-
ber and n is the iteration number. In order to find the orig-
inal eigenfunction of the Hamiltonian, one can use equa-
tion (15) by replacing the operators given in (5) and (8).

Dirac Oscillator (ω1 = ω2 = κ3 = γ4 = 0)

One can also show that the constrains given in this section
include the Dirac oscillator. In order to show this we ex-
press the Dirac oscillator with boson operators. Consider
the (2 + 1) dimensional Dirac equation for a free particle
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of mass m in terms of two component spinors, then ψ can
be written as [10,11,40]

Eψ =

(
2∑

i=1

cσipi +mc2σ0

)

ψ. (40)

The momentum operator pi is a differential operator p =
−i�(∂x, ∂y) and the 2D Dirac oscillator can be constructed
by changing the momentum as p → p−imωσ0r. Then the
Dirac equation (40) takes the form

(
E −mc2σ0

)
ψ = c [(px − ipy) − imω′(x − iy)]σ+

+ c [(px + ipy) − imω′(x+ iy)]σ−. (41)

After some straightforward treatment, we obtain the
bosonic form of the Dirac oscillator:

(
E −mc2σ0

)
ψ = 2ic

√
mω′�

[
aσ+ + a+σ−

]
ψ. (42)

An immediate practical consequence of these results is the
Lie algebraic structure of the Hamiltonians that can easily
be determined. It can be obtained by setting the param-
eters of the JC Hamiltonian to ω = 0, κ = 2ic

√
mω′� and

ω0 = mc2. Then the eigenvalues of the Dirac oscillator are
given by

E = ±1
2

√
4m2c4 − 4�ω′mc2 (k ± n). (43)

Modified Jaynes-Cummings Hamiltonian (κ1 = γ2 = κ3 =
γ4 = κ, ω2 = ω1 = ω)

In addition to these Hamiltonians, we can also show that
our formalism includes another important Hamiltonian:
When a single two-level atom is placed in the common do-
main of two cavities interacting with two quantized modes,
the Hamiltonian of such a system can be obtained from
the modification of the JC Hamiltonian and is given by

H = ωa+a+ωb+b+ω0σ0 +κ (a+ b)σ+ +κ
(
a+ + b+

)
σ−.
(44)

Without detailed calculations, one can obtain the energy
of the MJC Hamiltonian in the closed form by using AIM:

E =
(
k +

3
2

)
± 1

2

√
8 (k + 1 − n)κ2 + (2ω0 − 1)2. (45)

Consequently the exact eigenvalues can be reproduced by
AIM.

Conclusion

We have systematically discussed the solutions of various
physical Hamiltonians within the framework of AIM. We
have shown that the formalism given in this paper leads
to the exact or approximate solution of the problems of
various physical systems. We have applied the AIM to

the problem of an electron in a quantum dot in the pres-
ence of both a magnetic field and spin-orbit coupling. The
procedure presented here gives an accurate result for the
eigenvalues of the both JT and Rashba Hamiltonians. The
suggested approach can easily be used to solve other quan-
tum optical problems which are not discussed here.

We have presented a transformation procedure that of-
fers several advantages, especially if one wishes to describe
the eigenvalues of the bosonic Hamiltonians by using AIM.
We have also presented the steps towards an extension of
the AIM.

The technique given in this article can be extended in
several ways. The Hamiltonian of a quantum dot including
position dependent effective mass may be formulated and
solved within the procedure given here. We hope that our
method leads to interesting results on the spin-orbit effects
in quantum dots in future studies. Along this line we have
work in progress.
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per. One of the authors (O. Özer) is also grateful to the Abdus
Salam International Centre for Theoretical Physics, Trieste,
Italy, for its hospitality.
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Koç, M. Koca, Turk J. Phys. 29, 201 (2005)


